
1508 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Alleviating the Impact of Abnormal Events Through
Multi-Constrained VM Placement

Gongming Zhao , Member, IEEE, Jiawei Liu , Yutong Zhai, Hongli Xu , Member, IEEE,
and Huang He , Member, IEEE

Abstract—As a simple and low-cost way to obtain enough com-
puting resources, more and more tenants migrate their tasks to
the cloud. However, the frequent occurrence of abnormal events
(e.g., malicious tenants and node failures) in the cloud will seriously
affect the tenants’ QoS. Conventionally, the cloud vendors reduce
the frequency of abnormal events by deploying auxiliary systems,
which requires additional costs and increases network complexity.
Considering that it is an unrealistic expectation to eliminate the
occurrence of abnormal events in clouds, this paper proposes a
complementary scheme to alleviate the negative impact scope when
an abnormal event occurs through multi-constrained VM place-
ment without consuming additional resources. Specifically, when
deploying VMs, we limit the number of pods (or service nodes) each
tenant can access and the number of tenants hosted by each pod (or
service node). However, the multi-dimensional interaction among
numerous system parameters and performance/resource consider-
ations makes the problem of multi-constrained VM placement for
alleviating the impact of abnormal events very challenging. To solve
this problem, we formulate an integer linear programming and pro-
pose a rounding-based algorithm with a logarithmic approximation
ratio. We implement our proposed algorithm on a physical testbed.
The experimental and simulation results show the high efficiency
of the proposed algorithm. For example, our algorithm reduces the
impact scope of service node failure by 60%, the impact scope of
malicious tenants by 40%, and the tenant task makespan by 25%
compared with other alternatives.

Index Terms—Abnormal events, clouds, resource allocation, VM
placement.

I. INTRODUCTION

W ITH the development of cloud computing, more and
more enterprises migrate their computation tasks to the

Manuscript received 27 August 2022; revised 15 February 2023; accepted
21 February 2023. Date of publication 24 February 2023; date of current
version 16 March 2023. This work was supported in part by the National
Science Foundation of China (NSFC) under Grant 62102392, in part by the
National Science Foundation of Jiangsu Province under Grant BK20210121, in
part by Hefei Municipal Natural Science Foundation under Grant 2022013,
and in part by the Youth Innovation Promotion Association of CAS under
Grant 2023481. Some preliminary results of this paper were published in the
IEEE/ACM International Symposium on Quality of Service (IWQoS) 2021
[DOI: 10.1109/IWQOS52092.2021.9521344]. Recommended for acceptance
by M. Si. (Corresponding author: Hongli Xu.)

Gongming Zhao, Jiawei Liu, Yutong Zhai, and Hongli Xu are with the
School of Computer Science and Technology, University of Science and Tech-
nology of China, Hefei, Anhui 230027, China, and also with the Suzhou
Institute for Advanced Study, University of Science and Technology of China,
Suzhou, Jiangsu 215123, China (e-mail: gmzhao@ustc.edu.cn; liujiawe@mail.
ustc.edu.cn; zhaiyutong@meituan.com; xuhongli@ustc.edu.cn).

Huang He is with the School of Computer Science and Technology, Soochow
University, Suzhou, Jiangsu 215123, China (e-mail: huangh@suda.edu.cn).

Digital Object Identifier 10.1109/TPDS.2023.3248681

cloud since such a migration significantly reduces the complex-
ity and costs of managing private data centers. A typical cloud
(eg., Amazon EC2 [2] and Alibaba cloud [3]) is composed of
many pods. In each pod, cloud vendors deploy a large number of
compute nodes to provide computing resources (eg., CPU) for
tenants in the form of virtual machines (VMs). Moreover, the
service node in each pod can provide various network services
for tenants, such as virtual private network (VPN) [4] and elastic
load balancing (ELB) [5].

Abnormal events in a multi-tenant cloud are caused by either
external or internal factors, which are widespread and will reduce
the quality of service (QoS) of tenants [6], [7]. On the one hand,
the attack of malicious tenants is the most common abnormal
event caused by external factors. Specifically, there are massive
tenants in a commodity cloud, and the diversity of tenants means
that there may be many malicious tenants [8], [9]. Malicious
tenants will launch extensive network attacks, including denial
of service (DoS) attacks and co-residency attacks [10] against the
service nodes, paralyzing service nodes and decreasing network
performance. Moreover, by executing malicious programs on
the attacked VMs, a malicious tenant can hijack them so that
they can not serve legitimate tenants. According to a recent
report [11], malicious tenants access unauthorized VMs more
than ten times per minute in a small-size data center. On the other
hand, Schroeder et al. [12] observe that most abnormal events
caused by internal factors in clouds occur due to node failures.
According to [13], a system with 100,000 processors will expe-
rience a processor failure every few minutes. In addition, service
nodes fail more frequently than compute nodes, the median time
between two consecutive failures of firewall, load balancer, and
intrusion detection on service nodes is 7.5 hours, 5.2 hours,
and 20 minutes, respectively [14]. When a service node is
unavailable, the served requests should be rescheduled to other
available service nodes, which will cause a long rescheduling
delay and decrease tenants’ QoS [15].

Conventionally, the cloud vendors cope with abnormal events
by deploying accessorial systems, such as an intrusion detection
system to protect service nodes against malicious tenants [16]
and a monitoring system to monitor the service node status [17].
Although the above methods can reduce the frequency of abnor-
mal events in the cloud, it is an unrealistic expectation to entirely
eliminate the occurrence of abnormal events. Alternatively, this
work tries to alleviate the negative impact caused by abnormal
events through multi-constraint VM placement without consum-
ing additional resources. It is worth noting that existing works

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0002-5871-9187
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-2768-6607
mailto:gmzhao@ustc.edu.cn
mailto:liujiawe@mail.ustc.edu.cn
mailto:liujiawe@mail.ustc.edu.cn
mailto:zhaiyutong@meituan.com
mailto:xuhongli@ustc.edu.cn
mailto:huangh@suda.edu.cn

ZHAO et al.: ALLEVIATING THE IMPACT OF ABNORMAL EVENTS THROUGH MULTI-CONSTRAINED VM PLACEMENT 1509

mainly focus on reducing the frequency of abnormal events. We
regard that our work plays a complementary story to handling
abnormal events in the cloud, rather than trying to improve
previous methods or even substitute them. Note that, in practice,
VM placement (VMP) problems can be generally classified into
two categories [18], [19]: offline VMP and online VMP. The
former is usually performed when multiple VMs need to be
placed (eg., VM updates, virtual private cloud creation, system
initialization). On the contrary, the latter is performed to cope
with cloud dynamics. In fact, the two complement each other.
In this paper, we focus on offline VMP.

To this end, we will introduce two novel constraints when
deploying VMs in the cloud, besides purely pursuing load bal-
ancing on both compute nodes and service nodes. First, to control
the impact scope of malicious tenants, the VMs belonging to the
same tenant will be allocated to at most w service nodes/pods.
Second, to control the impact scope of service node failures,
each service node/pod will host VMs of up to h tenants. Here
w and h are two constant parameters configured by the cloud
system. The rationale behind the first constraint is that with
proper isolation techniques [20], a malicious tenant will only
attack the service nodes that provide services for the allocated
VMs. Hence the first constraint helps to limit the damage caused
by a single malicious tenant. On the other hand, the failure of
a service node will result in performance degradation for all
the tenants in the corresponding pods, thus we have the second
constraint to limit the impact scope caused by a service node
failure. Note that, in this work, we do not consider the failure of
compute nodes since a compute node usually supports a limited
number of VMs, eg., 10.8 VM instances on a compute node [21],
[22]. Thus, the failure of a compute node will not significantly
degrade the performance from the cloud’s perspective. Actually,
the proposed algorithm in our work can be easily extended to
deal with compute node failures (see details in Section IV-D).
The main contributions of this paper are as follows:

1) We first discuss two abnormal situations, malicious tenants
and service node failures. Accordingly, we propose two
novel constraints, and the problem of VM placement that
can alleviate the impact of abnormal events (VMP-AI) in
the multi-tenant cloud.

2) We formulate the VMP-AI problem as an integer linear
programming and prove its NP-hardness. Moreover, we
propose a randomized rounding-based algorithm named
R-VMP-AI for this problem and further prove it can
achieve the bi-criteria approximation.

3) We evaluate the performance of the proposed algorithm
through large-scale simulations and small-scale experi-
ments compared with state-of-the-art solutions. The sim-
ulation results show that under the premise of cloud load
balancing, our algorithm reduces the impact scope of ser-
vice node failures by 60%, the impact scope of malicious
tenants by 40%, and the tenant task makespan by 25%
compared to state-of-the-art solutions.

The rest of this paper is organized as follows. Section II
presents the related works, including VM placement, malicious
tenants, and service node failures. Section III introduces the
motivation, describes the system model, defines the VMP-AI

problem, and analyzes its complexity. In Section IV, we pro-
pose an efficient algorithm to solve VMP-AI, and theoretically
analyze the approximate performance. Section V shows the
simulation and experiment results of our proposed algorithm
and some alternatives. We conclude this paper in Section VI.

II. RELATED WORKS

To provide stable cloud services, the cloud platform expects to
minimize the negative impact of abnormal events while meeting
the resource requirements (ie., computing resources and network
resources). In this section, we summarize the state-of-the-art
VM placement solutions and the methods of handling abnormal
events in the cloud.

In recent years, a series of VM placement mechanisms [24],
[25], [26], [27] have been widely proposed for improving the
utilization of cloud resources and increasing cloud revenue.
For example, to reduce the number of used cloud servers, a
general way is to treat each compute node as a bin with fixed
computing resources, each VM as a package, and the VM
placement problem is formalized into a multi-dimensional bin-
packing problem [24]. To improve the utilization of computing
resources and network resources simultaneously, a multipath
routing capability and dynamic VM migration algorithm is
proposed [25]. Moreover, COmpvm [27] considered the VM
placement based on the life cycle and resource requirements of
VMs. However, the above VM placement mechanisms did not
consider the scenario when abnormal events occur in the cloud.

Abnormal events in multi-tenant clouds are caused by external
or internal factors, and attacks by malicious tenants and service
node failures are common abnormal events caused by external
and internal factors, respectively [6], [7]. On the one hand,
malicious tenants are a huge threat because they will launch
attacks [28] and make the service node unavailable [29] from
inside, and it is difficult to be identified immediately. To prevent
malicious tenants, a series of network isolation mechanisms and
detection mechanisms have been proposed [11], [20], [30], [31].
The general solution is based on traffic analysis and packet
capture. For example, seawall [20] deployed a traffic analysis
module on the hypervisor for detecting the UDP traffic or
abnormally behaving TCP stack from the malicious tenants.
Once malicious traffic is detected, the security module may
limit the malicious traffic speed or shut down the malicious
VM [20]. Similarly, the packet captured from the network router
can also detect whether there exists an attack [30]. However, the
continuous traffic analysis and packet capture at scale come with
prohibitive performance overheads. To reduce the overhead of
traffic analysis, Privateeye [11] detects the malicious VM based
on the 10-minute flow pattern changes, but it still cannot achieve
100% malicious detection. In addition, to prevent co-location
attacks by malicious tenants, a series of VM placement strate-
gies have also been proposed [32], [33], [34], [35], [36]. For
example, Ding et al. [33] design a VM placement strategy to
reduce the hit rate of the malicious tenants and the loss rate
of the targeted tenants to enhance cloud computing security.
Liu et al. [34] measure the cost of security risks for a VM
allocation by the estimated percentage of malicious users and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

1510 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 1. Illustration of a tiny cloud consisting of two pods. Each pod consists of one service node (SN) and two compute nodes (CNs). The computing resource
capacity of each compute node is set as 10, and the traffic processing capacity of each service node is set as 30 for simplicity. VMs of four tenants are deployed
on the compute nodes, and the service nodes process their traffic. VM1-1, VM1-2 and VM1-3 belong to tenant 1. VM2-1, VM2-2 and VM2-3 belong to tenant 2.
VM3-1, VM3-2 and VM3-3 belong to tenant 3. VM4-1, VM4-2 and VM4-3 belong to tenant 4. The numeric tuples of a VM represent the requested computing
resource and traffic resource of this VM. For example, tuple VM1-2 (4,1) denotes that VM1-2 will cost 4 units of computing resource and 1 unit of traffic resource.
The two diagrams denote two different ways of VM placement scheme (the Nova-CN scheme [23] and our proposed scheme). (a) Left plot: The VM placement by
the Nova-CN scheme. (b) Right plot: The VM placement by our scheme.

the number of servers and users in the cloud. Azar et al. [35]
propose a randomization way of assigning VMs that makes the
deployment of VMs unpredictable for the attacker. Li et al. [36]
design a Vickrey-Clarke-Groves mechanism to migrate VMs
periodically, so that malicious VMs cannot stay co-located with
their target VM for a long time.

On the other hand, service node failures are also common,
often occurring in some abnormal events (eg., connectivity
errors, hardware faults, and resource overload [14], [37], [38]).
These service node failures may lead to the service being un-
available and decrease the QoS of tenants [15], [37]. To deal
with service node failures, several efficient solutions have been
designed [39], [40], [41], [42], [43]. For example, Li et al. [39]
deployed redundant service nodes to deal with node failures
and maximize the network service revenue. Shang et al. [40]
and Zhang et al. [41] deployed backup instances to minimize
the backup cost under resource constraints. Inspired by machine
learning, Li et al. [42] introduce an AIOps (Artificial Intelligence
for IT Operations) solution for predicting node failures for
an ultra-large-scale cloud computing platform. Caviglione et
al. [43] propose a multi-objective approach using a heuristic
algorithm based on a deep reinforcement learning framework
to achieve a trade-off between the impact of hardware outages,
energy consumption and quality of service.

Existing works mainly focus on the prevention and recovery
of abnormal situations. Although detection mechanisms and
backup services can reduce the frequency of abnormal events,
it is unrealistic to eliminate the occurrence of abnormal events.
Therefore, limiting the impact of abnormal events is essential.
In this paper, we focus on how to limit the impact scope caused
by malicious tenants and service node failures to alleviate neg-
ative impacts when abnormal events occur, which complements
existing works.

III. PRELIMINARIES

A. A Motivating Example

In this section, we provide a toy example to illustrate that an
appropriate VM placement strategy can alleviate the negative
impact scope on the cloud network facing with an abnormal
event. In this example, the cloud consists of two pods: pod 1
and pod 2. Each pod contains one service node (SN) and two
compute nodes (CNs), as shown in Fig. 1. For convenience, let
V={CN1,CN2,CN3,CN4} and S={SN1,SN2} denote the
set of compute nodes and service nodes, respectively. The traffic
processing capacityC(s) of each service node s ∈ S is set as 30,
and the resource capacityR(v) (eg., CPU) of each compute node
v ∈ V is set as 10 for simplicity. There are four tenants, each of
which requests three VMs. For example, tenant 1 requests three
VMs, named VM1-1,1-2 and 1-3. The corresponding resource
demand for compute nodes (eg., CPU) and traffic demand for
service nodes are marked after the VMs.

As one of the most popular open-source platforms for private
and public clouds, OpenStack [44] uses the nova-scheduler
to decide how VMs should be placed among the compute
nodes of the OpenStack cluster. Specifically, when the nova-
scheduler [23], [45] receives a VM placement request, it first
uses a filtering algorithm to get a list of candidate compute
nodes (which compute nodes have resources to host the VM
and meet VM requirements). Then, the nova-scheduler uses a
weighting algorithm to rank the compute nodes from the filtered
list and choose the most appropriate compute node. By default,
the lower the load of compute node, the higher the ranking. If
we use the default nova-scheduler method (named Nova-CN for
convenience) to place these VMs on compute nodes, the final
placement result is shown in the left plot of Fig. 1. Specifically,
VMs 1-1, 2-2 and 3-3 are placed on CN1; VMs 1-2, 3-2 and 4-3

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: ALLEVIATING THE IMPACT OF ABNORMAL EVENTS THROUGH MULTI-CONSTRAINED VM PLACEMENT 1511

are placed on CN2; VMs 1-3, 3-1 and 4-2 are placed on CN3;
and VMs 2-1, 2-3 and 4-1 are placed on CN4.

However, this placement scheme will lead to poor network
performance when encountering malicious tenants or service
node failures. First, we observe that each tenant will access 2
pods. That is, if there is a malicious tenant, malicious traffic
(eg., DoS attacks) will be injected into two service nodes. It will
degrade the whole network performance and affect the QoS of all
tenants. Second, each service node serves the VM instances of
four tenants. That is, if one of the service nodes fails, all tenants
will be affected. Moreover, we measure the traffic load �(s) of
each service node s∈S and the computing load �(v) of each
compute node v∈V , then find the maximum computing load of
the compute nodes is 10, and the maximum traffic load of the
service nodes is 26. Therefore, the load ratio of service nodes
is λSN =max{�(s)/R(s), s ∈ S}=26/30=0.87, and the load
ratio of compute nodes is λCN =max{�(v)/R(v), v ∈ V}=
10/10=1.

B. Our Intuition

A question immediately following the above discussion is:
can we design a VM placement scheme for better alleviating
the impact of abnormal events in clouds? Specifically, this VM
placement scheme should be able to avoid the above three
disadvantages of the Nova-CN method. In other words, we
expect to design a VM placement scheme that limits the impact
scope of malicious tenants and service node failures in clouds,
and simultaneously achieves load balancing on both compute
nodes and service nodes. In this example, a feasible placement
scheme is shown in the right plot of Fig. 1. Specifically, VMs
1-1, 1-3 and 4-2 are placed on CN1; VMs 1-2, 4-1 and 4-3
are placed on CN2; VMs 2-1, 3-1 and 3-2 are placed on CN3;
and VMs 2-2, 2-3 and 3-3 are placed on CN4. Based on the
above VM placement scheme, the negative impact of malicious
tenants and service node failures can be alleviated. For example,
a malicious tenant can only attack one service node since each
tenant can only access 1 pod, while a service node failure will
affect two tenants because each service node serves the VM
instances of two tenants. Thus, this VM placement scheme can
better alleviate the impact of abnormal events compared to the
Nova-CN method. In addition, we find that the maximum load
of the service and compute nodes are 16 and 8, respectively. The
load ratio of service nodes is λSN =max{�(s)/R(s), s ∈ S}=
16/30=0.53, and the load ratio of compute nodes is λCN =
max{�(v)/R(v), v ∈ V}=8/10=0.8. Note that our schedule
can achieve better load balancing compared with Nova-CN due
to its smaller load ratio. The performance comparison between
Nova-CN and our proposed scheme is summarized in Table I.

In this paper, our goal is to design a VM placement algorithm
in clouds to alleviate the impact of abnormal events better. To
this end, we introduce two novel constraints in the traditional
VM placement problem: service node and tenant constraints. On
the one hand, compared with existing methods, our proposed
algorithm can effectively alleviate the negative impact scope
when an abnormal event occurs through multi-constrained VM
placement without consuming additional resources. On the other

TABLE I
PERFORMANCE COMPARISON BETWEEN NOVA-CN AND OUR PROPOSED

SCHEME, INCLUDING MAX. COMPUTING LOAD, LOAD RATIO OF COMPUTE

NODES, MAX. TRAFFIC LOAD, LOAD RATIO OF SERVICE NODES, AVG. NUMBER

OF PODS ACCESSED BY TENANTS AND AVG. NUMBER OF TENANTS SERVED BY

SERVICE NODES

TABLE II
KEY NOTATIONS

hand, since we limit the number of pods (h) each tenant can
access and the number of tenants hosted by each pod (w) when
deploying VMs, our proposed method may lead to lower re-
source utilization in the cloud compared with existing methods.
However, when the cloud vendor sets the appropriate values of
h and w (see details in Section V), our proposed method only
causes a slight waste of resources. In fact, we can achieve the
trade-off between resource utilization and the impact range of
abnormal events by adjusting the value of h and w.

C. System Model

In this section, we abstract the cloud into two components:
the infrastructure model and the multi-tenant model. For ease of
reference, Table II summarizes the key notations.

1) Infrastructure Model: A typical cloud consists of many
pods, each of which usually consists of a set of compute
nodes and one service node [46]. Compute nodes provide
computing resources for tenants in the form of VMs. We use

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

1512 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

V = {v1, v2, . . ., vn} to denote the set of compute nodes, where
n is the number of compute nodes in the cloud. Service nodes
provide various network services (eg., ELB [47], firewall [48])
for tenants. Let S = {s1, s2, . . ., sq} denote the service node
set, where q is the number of pods in the cloud.

In addition, we use s(v) to represent the service node that
provides service for compute nodev ∈ V . In other words, service
node s(v) is responsible for providing services for VMs in
compute node v. For each service node s, we use C(s) to denote
its traffic processing capacity. Since some tenants may have
deployed VMs and generated traffic before, we use b(s) to denote
the existing background traffic in service node s. Moreover, let
a binary constant g(u, s) denote whether tenant u has requested
traffic resources in service node s or not. For each compute node
v, we use R(v) to denote the computing resource (eg., CPU)
capacity, and b(v) to denote the amount of occupied resources.
Note that, R(v) and b(v) can be expanded into resource vectors
that represent different types of resources on compute node v.

2) Multi-Tenant Model: In a multi-tenant cloud, a set of
tenants rent VMs and buy services from cloud vendors according
to their demands. LetU = {u1, u2, . . .um} denote the set of ten-
ants, wherem is the number of tenants in the cloud. Tenants usu-
ally request a set of VMs with different application requirements,
such as batch processing and high-performance computing [49].
Therefore, the required resources of each VM are different. For
each tenant u ∈ U , let Pu = {pu,1, pu,2, . . ., pu,lu} denote the
set of requested VM instances, where lu is the number of VM
instances required by tenant u. Each VM instance pu,d ∈ Pu

with 1 ≤ d ≤ lu, will consume some compute resources (eg.,
CPU and RAM), denoted as r(pu,d). Similar to R(v) and
b(v), r(pu,d) also can be expanded into a resource vector that
represents different resource requirements. Moreover, for each
VM instance pu,d ∈ Pu, we use f(pu,d) to denote the traffic
demand that needs to be served by the corresponding service
node. In practice, r(pu,d) is specified when the VM instance
pu,d is created, and f(pu,d) can be estimated according to the
fees paid by tenant u and the type of VM instance pu,d [50].

D. Problem Definition

We formally define the VM placement problem that can allevi-
ate the impact of abnormal events (VMP-AI) with the following
three constraints: 1) Sevice node constraints: To alleviate the
impact of the service node failure, we limit the number of tenants
served by each service node, so that the number of affected ten-
ants by a service node failure is controllable. Specifically, each
service node can serve h tenants at most. 2) Tenant constraints:
To alleviate the impact of the malicious tenants, we limit the
number of service nodes/pods that each tenant can access, so
that the number of affected service nodes/pods is controllable
when encountering malicious tenants attacks. Specifically, we
should ensure that the traffic of each tenant can be forwarded to
w service nodes at most. 3) Resource constraints: The resources
that each compute node can provide must meet the needs of the
tenants on that compute node. Specifically, for each compute
node, its resource load should not exceed λ ·R(v). For each
service node, its traffic load should not exceed λ · C(s). The

goal of VMP-AI is to achieve the load balance among all service
nodes and all compute nodes. Accordingly, we formulate the
VMP-AI problem as follows:

min λ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
v∈V x

pu,d
v = 1, ∀u, d

xu,d
v ≤ yus(v), ∀u, v, d

g(u, s) ≤ yus , ∀u, s∑
u∈U yus ≤ h ∀s∑
s∈S y

u
s ≤ w ∀u∑

u∈U
∑

pu,d∈Pu

∑
v∈V:s(v)=s x

pu,d
v · f(pu,d)

+b(s) ≤ C(s) · λ ∀s∑
u∈U

∑
pu,d∈Pu

x
pu,d
v · r(pu,d)

+b(v) ≤ R(v) · λ, ∀v
x
pu,d
v ∈ {0, 1}, ∀u, v, d

yus ∈ {0, 1}, ∀u, s
(1)

In (1), xpu,d
v denotes whether VM instance pu,d of tenant u is

placed in compute node v or not. yus ∈ {0, 1} represents whether
service node s will process the traffic of tenant u or not. The
first set of equations means that each VM will be placed on
one and only one compute node. The second and third sets of
inequalities express that once a VM of tenant u is placed on
compute node v, the connected service node s(v) will process
the traffic from tenant u (ie., yus(v) = 1). Similarly, if service
node s has background traffic from tenant u (ie., g(u, s) = 1),
we have yus = 1. The fourth set of inequalities represents the
Sevice node constraints, ie., the number of tenants that a service
node can serve cannot exceed h. The fifth set of inequalities
means the Tenant constraints, ie., the number of service nodes
accessed by each tenant cannot exceed w. The sixth and seventh
sets of inequalities indicate the resource load on each compute
node vj and the traffic load of each service node, where λ is the
load balancing factor. Our goal is to achieve the load balancing
among all service nodes and among all compute nodes, ie., minλ.

E. Problem Complexity Analysis

In this section, we analyze the complexity of the VMP-AI
problem. Specifically, we consider the following six constraints
in VMP-AI. (1) Each requested VM needs to be placed on
one compute node. (2) The service traffic of each VM will be
processed by the corresponding service node. (3) The number of
tenants served by each service node is constrained. (4) The num-
ber of service nodes accessed by each tenant is constrained. (5)
Each compute node should not be overloaded. (6) Each service
node should not be overloaded. In fact, even if some constraints
are relaxed, the problem is still challenging, which illustrates the
complexity of our problem. By ignoring some constraints, we
can transform VMP-AI into two classic NP-hard problems: the
unrelated parallel machine scheduling (UPMS) problem [51]
and the multiple commodity flow (MCF) problem [52]. As a
result, the VMP-AI problem is NP-hard too.

Unrelated Parallel Machine Scheduing (UPMS) prob-
lem [51]: There exists m parallel machines and n independent

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: ALLEVIATING THE IMPACT OF ABNORMAL EVENTS THROUGH MULTI-CONSTRAINED VM PLACEMENT 1513

jobs. Each job is assigned to one of the machines. The processing
of job j on machine i requires time pi,j . The objective is to find a
schedule that minimizes the makespan. According to [51], there
exist a complex algorithm based on combinatorial rounding with
the approximate factor of 2.

Difference from the UPMS problem: If we ignore the con-
straints (3), (4), (5), (6), and the goal is to achieve the load
balancing among all compute nodes. We regard each compute
node as a machine, and each VM as an independent job. Thus, the
VMP-AI problem becomes the UPMS problem, ie., the UPMS
problem is a special case of VMP-AI.

Multiple Commodity Flow (MCF) problem [52]: There exists
k different commodities in a network with known topology. The
network consists of n nodes and m edges. Each commodity is
composed of a source node s, a destination node t, and a demand
vector �d = (d1, d2, . . .), denoted as (s, t, �d). The objective of
this problem is to find the percentage of load balancing that can
simultaneously transport a set of commodities without violating
the capacity constraints. According to [53], there exists an
efficient algorithm with the approximate factor of 1 + ε, and
its time complexity is O(k2.5a2b2.5 log(aε−1)DU), where k is
the number of commodities, a and b denote the number of nodes
and edges in the network, D is the greatest demand, and U is
the largest edge capacity.

Difference from the MCF problem: We use R and C to denote
the maximum computing capacity of compute nodes and the
maximum processing capacity of service nodes, respectively.
Then we construct a network topology with a source node s, a
destination node t, and m+ n internal nodes. We name these
internal nodes as {v1, . . ., vm} and {s1, . . ., sn}. The source
node s connects with each internal node vi with link capac-
ity (R(vi), C), and the destination node t connects with each
internal node sj with link capacity (R,C(sj)). Moreover, if the
traffic from compute node vi will be processed by service node
sj , then we construct a link between node vi and node sj with
link capacity (R,C). Then we ignore constraints (3) and (4) of
VMP-AI, and regard each VM as a commodity with (s, t, �d),
where �d = (d1, d2). Here d1 and d2 represent the requested
computing resource and traffic resource of this VM, respectively.
The goal of VMP-AI is to achieve load balancing. Thus, the
VMP-AI problem becomes the MCF problem. Therefore, the
MCF problem is a special case of VMP-AI.

Based on the above analyses, designing an algorithm with
bounded approximation factors for VMP-AI is far from trivial
and in urgent need.

IV. ALGORITHM DESIGN

In this section, we present a rounding-based algorithm to
solve the VMP-AI problem, called R-VMP-AI, and analyze the
approximate performance.

A. Algorithm Description

The R-VMP-AI algorithm starts by constructing the linear
programming as relaxation of VMP-AI (LP-VMP-AI). More
specifically, LP-VMP-AI assumes that both the VM placement

Algorithm 1: R-VMP-AI: Rounding-Based Algorithm for
VMP-AI.

1: Input: System parameters {h,w}, resource parameters
{R(v), C(s), b(v), b(s)}, and tenant VM requests {Pu}

2: Step 1: Sloving the relaxation problem of VMP-AI
3: Construct a linear programming named LP-VMP-AI

formalized in (1)
4: Obtain the optimal fractional solutions {x̃pu,d

v , ỹus }
5: Step 2: Selecting service nodes for tenants
6: for each tenant u ∈ U do
7: for each service node s ∈ S do
8: Set ŷus = 1 with probability ỹus
9: if ŷus == 1 then

10: Select service node s for tenant u
11: Step 3: Placing VM instances on compute nodes
12: for each tenant u ∈ U do
13: for each requested VM pu,d ∈ Pu do
14: for each compute node v ∈ V do
15: if ŷus(v) == 1 then

16: Set x̂pu,d
v = 1 with probability x̃

pu,d
v

ỹu
s(v)

17: if x̂pu,d
v == 1 then

18: Place VM pu,d on compute node v
19: Output: VM placement schemes {x̂pu,d

v , ŷus }

and the VM’s traffic demands are splittable. That is, LP-VMP-AI
relaxes the variables {xpu,d

v } and {yus } from integral to frac-
tional. Since LP-VMP-AI is linear programming, we can solve
it with a linear programming solver in polynomial times, and
get the optimal solution {x̃pu,d

v } and {ỹus } (lines 2-4), and the
optimal result is denoted as λ̃. As LP-VMP-AI is relaxation of
VMP-AI, λ̃ is the lower-bound result for VMP-AI. The second
step is to derive an integer solution{ỹus }, for∀s ∈ S and∀u ∈ U ,
by randomized rounding [54]. For each individual tenant u
and service node s, R-VMP-AI rounds variable ŷus to 1 with
probability ỹus (lines 5-13) to keep the service node constraints
and the tenant constraints. If ŷus = 1, it means that the traffic
of tenant u can be served by the service node s. Each rounding
decision is independent with each other. Then the third step is to
decide the VM placement scheme by rounding variables x̂pu,d

v to
1 with probability x̃pu,d

v /ỹus . If x̂pu,d
v = 1, then we place VMpu,d

on compute node v (lines 14-26). Based on the above process,
we get an integer solution {x̂pu,d

v , ŷus }. R-VMP-AI is formally
described in Algorithm 1.

B. Performance Analysis

First, we prove that the solution of the algorithm satisfies
the constraints in (1) on expectations. Then we analyze the
approximate performance of R-VMP-AI.

Lemma 1. The R-VMP-AI algorithm allocates sufficient re-
sources for these requested VMs with a high probability.

Proof. First, by construction, R-VMP-AI first selects a set of
service nodes for tenants (lines 5-13), then places VMs on the
compute nodes connected to the service nodes belong to this
node set (lines 14-26), which satisfies the third set of constraints

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

1514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

in (1). Then we have the probability that VM pu,d is placed on
compute node v:

Pr
[
x̂
pu,d
v =1

]
= Pr

[
x̂
pu,d
v =1|ŷus(v)=1

]
Pr

[
ŷus(v)=1

]
+ Pr

[
x̂
pu,d
v = 1|ŷus(v) = 0

]
Pr

[
ŷus(v) = 0

]
=

x̃
pu,d
v

ỹus(v)
· ỹus(v) = x̃

pu,d
v (2)

On the other hand, according to the first set of constraints in
(1), the sum of the probabilities that VM instance pu,d being
placed on each compute node is:∑

v∈V
Pr

[
x̂
pu,d
v = 1

]
=

∑
v∈V

x̃
pu,d
v = 1 (3)

The above analysis shows that the compute nodes provide
enough CPU and RAM resources for VM instances with a high
probability.

Lemma 2. The solution returned by R-VMP-AI satisfies the
compute node resource constraint and service node traffic con-
straint.

Proof. According to the the second set of constraints in (1),
we have the resources expected to be allocated to all tenants in
compute node v:

E

⎡⎣∑
u∈U

∑
pu,d∈Pu

x̂
pu,d
v · r(pu,d)

⎤⎦+ b(v)

=
∑
u∈U

∑
pu,d∈Pu

Pr
[
x̂
pu,d
v = 1

] · r(pu,d) + b(v)

=
∑
ui∈U

∑
pu,d∈Pu

x̃
pu,d
v · r(pu,d) + b(v) ≤ R(v) · λ̃ (4)

The second equation is because the variable x̂
pu,d
v equals 1

with probability x̃
pu,d
v . Similarly, we can prove the service node

traffic constraint is also satisfied. Thus, we omit the proof here.
Lemma 3. The solution of R-VMP-AI also satisfies the ser-

vice node constraints and the tenant constraints in (1).
Proof. We prove the service node constraints as an example.

According to the the six set of constraints in (1), we have the
expected number of tenants to be served by service node s.

E

[∑
u∈U

ŷus

]
=

∑
u∈U

Pr [ŷus = 1] =
∑
u∈U

ỹus ≤ h (5)

The second equation is because the variable ŷus equals to 1
with probability ỹus .

The above analysis has shown that R-VMP-AI satisfies in
expectation all the constraints in (1). However, these constraints
may be violated. Next, we analyze the approximate performance
of R-VMP-AI. In the approximate performance analysis, we use
two classical theorems, Chernoff Bound and Union Bound. First,

we define a variable α to assist our proof as follows:

α = min

{
λ̃ ·R(v)− b(v)

r(pu,d)
,
λ̃ · C(s)− b(s)

f(pu,d)
, h, w

}
,

v ∈ V, u ∈ U , s ∈ S (6)

On the right side of (6), the first item denotes the ratio of the
available resource of compute node to the computing resource
demand of each VM; the second item represents the ratio of the
available capacity of service node to the traffic demand of each
VM; the third item and the last item denote the number of tenants
served by one service node and the number of service nodes one
tenant can access, respectively. Next, we give the approximate
performance analysis in detail.

Theorem 4. The R-VMP-AI algorithm can achieve the ap-
proximation factor of 2 logn

α + 3 for the resource constraint of
compute nodes, where n is the number of compute nodes.

Proof. Before analysing the resource constraint of compute
nodes, we define a variableσpu,d

v to denote the occupied resource
for each VM pu,d on each compute node v:

σ
pu,d
v =

{
r(pu,d), with probability of x̃

pu,d
v

0, otherwise.
(7)

According to the definition, {σpu,d
v } are mutually indepen-

dent. The resource expected to be occupied on compute node v
is as follows:

E

⎡⎣∑
u∈U

∑
pu,d∈Pu

σ
pu,d
v

⎤⎦+ b(v)

=
∑
u∈U

∑
pu,d∈Pu

E[σ
pu,d
v] + b(v)

=
∑
u∈U

∑
pu,d∈Pu

x̃
pu,d
v ·r(pu,d) + b(v) ≤ R(v) · λ̃ (8)

Combining (8) and the definition of α in (6), we have:⎧⎨⎩
σ
pu,d
v ·α

R(v)·˜λ−b(v)
∈ [0, 1]

E

[∑
u∈U

∑
pu,d∈Pu

σ
pu,d
v ·α

R(v)·˜λ−b(v)

]
≤ α.

(9)

Then by applying Chernoff Bound, assume that ρ is an arbi-
trary positive value. It follows:

Pr

⎡⎣∑
u∈U

∑
pu,d∈Pu

σ
pu,d
v · α

R(v) · λ̃ − b(v)
≥ (1 + ρ) · α

⎤⎦ ≤ e
−ρ2 ·α
2+ρ

⇒ Pr

⎡⎣∑
u∈U

∑
pu,d∈Pu

σ
pu,d
v

R(v) · λ̃ − b(v)
≥(1+ρ)

⎤⎦≤e
−ρ2 ·α
2+ρ ≤ 1

n2

(10)

Where n denotes the number of compute nodes, and 1
n2 is a

value close to zero. By solving the above equation, we have:

ρ ≥ 2 log n

α
+ 2 (11)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: ALLEVIATING THE IMPACT OF ABNORMAL EVENTS THROUGH MULTI-CONSTRAINED VM PLACEMENT 1515

By applying Union Bound, we have the probability that any
server violates the constraint equals to:

Pr

⎡⎣⋃
v∈V

⎧⎨⎩∑
u∈U

∑
pu,d∈Pu

σ
pu,d
v · α

R(v) · λ̃ − b(v)
≥ (1 + ρ) · α

⎫⎬⎭
⎤⎦

≤
∑
v∈V

Pr

⎡⎣∑
u∈U

∑
pu,d∈Pu

σ
pu,d
v · α

R(v) · λ̃ − b(v)
≥ (1 + ρ) · α

⎤⎦
≤ n · 1

n2
=

1

n
, ρ ≥ 2 log n

α
+ 2 (12)

Note that the second equality holds, because the number of
compute nodes equalsn. The resource violation of our algorithm
will not exceed ρ+ 1 = 2 logn

α + 3.
Theorem 5. The R-VMP-AI algorithm can achieve the ap-

proximation factor of 2 log q
α + 3 for the service node traffic

constraint, where q denotes the number of service nodes.
Proof. We can prove Theorem 5 in a similar way with the

proof of Theorem 4. Thus, we omit the detailed proof here.
Theorem 6. The R-VMP-AI algorithm can achieve the ap-

proximation factor of 2 log q
α + 3 for the service node constraints.

Proof. We define a random variable θus to denote whether
service node s serves the traffic from tenant u:

θus =

{
1, with probability of ỹsu
0, otherwise.

(13)

According to the definition, {θus } are mutually independent.
The expected number of tenants served on service node s is:

E

[∑
u∈U

θus

]
=

∑
u∈U

E[θus] =
∑
u∈U

ỹus ≤ h (14)

Combining (14) and the definition of α in Def. (6), we have:{ θu
s ·α
h ∈ [0, 1]

E

[∑
u∈U

θu
s ·α
h

]
≤ α.

(15)

Then by applying Chernoff Bound, assume that τ is an arbi-
trary positive value. It follows:

Pr

[∑
u∈U

θus · α
Ω

≥ (1 + τ) · α
]
≤ e

−τ2 ·α
2+τ

⇒ Pr

[∑
u∈U

θus
Ω

≥ (1 + τ)

]
≤ e

−τ2 ·α
2+τ ≤ 1

q2
(16)

Where q denotes the number of service nodes, and 1
q2 is a

value close to zero. By solving the above equation, we have:

τ ≥ 2 log q

α
+ 2 (17)

By applying Union Bound, we have the probability that any
server violates the constraint equals to:

Pr

[⋃
s∈S

{∑
u∈U

θus · α
Ω

≥ (1 + τ) · α
}]

≤
∑
s∈S

Pr

[∑
u∈U

θus · α
Ω

≥ (1 + τ) · α
]

≤ q · 1

q2
=

1

q
, ρ ≥ 2 log q

α
+ 2 (18)

The second equality holds because the number of service
nodes equals q. The resource violation of our algorithm will
not exceed τ + 1 = 2 log q

α + 3.
Theorem 7. The R-VMP-AI algorithm can achieve the ap-

proximation factor of 2 log q
α + 3 for the tenant constraints.

Proof. We can prove Theorem 7 in a similar way to the proof
of Theorem 6. Thus we omit the detailed proof here.

Approximation Factor: According to the above analysis, we
can conclude that the approximate factors of our algorithm are
bi-criteria approximations with respect to both the objective
value and constraints. In many practical scenarios, these factors
are constant. For example, consider a cloud with thousands
of compute nodes and hundreds of service nodes. Then we
have n = 1000 and q = 100. In general, one compute node can
accommodate more than ten VMs, and there are more than ten
compute nodes in one pod. Thus, we estimate the value α = 10.
Then the bi-criteria approximation factor becomes 2 logn

α + 3 =

4.38 and 2 log q
α + 3 = 3.92, respectively.

C. Complete Algorithm Description

In fact, the output of the R-VMP-AI algorithm may violate
some constraints in (1). For example, one VM instance may
be placed on multiple compute nodes, or it may not be placed.
Moreover, the VM placement scheme may violate the resource
constraints of compute nodes and service nodes. To deal with
such cases, the VM placement needs to convert the bi-criteria
solution into a feasible solution, ie., a solution that satisfies the
constraints in (1), thereby making the algorithm more practical.
To obtain the feasible VM placement solution, we mainly con-
sider the following four steps. The first step is the same as that
of R-VMP-AI: construct linear programming by relaxing the
binary variables in (1) and obtain the optimal fractional solution
{x̃pu,d

v , ỹus }.
In the second step, we first transform the fractional solution

{ỹus } to several feasible integral solutions {ŷus }, and these
integral solutions satisfy the constraints in (1). For example,
for tenant u1 and service node s1, we have the optimal soution
ỹus = {0.8, 0.4, 0} and we have the constraint

∑
yus ≤ 2. Then

we can transform the fractional solution ỹus to three feasible
integral solutions ŷu1

s1
= {1, 1, 0}, {1, 0, 0}, and {0, 1, 0}.

The third step is to find the feasible integral solutions {x̂pu,d
v }

for the generated integral solution {ŷus }, and these integrated
solutions can strictly meet the computing resource constraint
and the traffic resource constraint in (1). For example, once
there exists a tenant u and service node s to satisfy ŷus = 0, then
all compute nodes connected to the service node cannot place
the VM of tenant u. Since {ŷus } strictly satisfy the constraints,
we can use the greedy method to find several feasible integral
solutions {x̂pu,d

v }. Finally, based on the above three steps, we
will find some feasible VM placement schemes which satisfy

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

1516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

the constraints in (1). The last step is to compare these integral
solutions, and choose the minimum λ as the output solution.
Moreover, we can decrease the time complexity of the algorithm
by limiting the number of feasible solutions {ŷus } and {x̂pu,d

v }
in the second and third steps, respectively.

D. Discussion
� In some scenarios, cloud vendors want to alleviate the

impact of compute node failures on the cloud. We claim
that our proposed algorithm also works in this case. Specif-
ically, let zuv ∈ {0, 1} denote whether some VMs of tenant
u will be placed on compute node v or not. According to
the definitions of zuv and x

pu,d
v , we have:

zuv ≥ x
pu,d
v , ∀u, v, d (19)

Similar to service node constraints, we limit the number of
tenants served by each compute node (ie., each compute
node can serve q tenants at most), so that the number of
affected tenants by a compute node failure is controllable.
In this way, we have compute node constraints, as shown
in (20). ∑

u∈U
zuv ≤ q, ∀v (20)

The compute node constraints are similar to the service
node constraints, so our proposed algorithm can be ex-
tended to address this scenario.

V. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

1) Performance Metrics: We use the following nine perfor-
mance metrics to evaluate the performance of our proposed
algorithm. (1) The load ratio of compute nodes (CNs); (2) The
load ratio of service nodes (SNs); (3) The impact scope of service
node failures (ie., the average number of tenants served by each
service node); (4) The impact scope of malicious tenants (ie.,
the average number of service nodes that each tenant accesses);
(5) The valid cloud throughput; (6) The CPU utilization of each
service node; (7) The round-trip time (RTT) of each service
node; (8) The packet loss ratio of each service node; and (9) The
task makespan of each tenant.

In large-scale simulations, we use the first and second metrics
to evaluate the load balancing among all compute nodes and
service nodes, respectively. The third and fourth metrics are used
to evaluate the scope of negative impact on the cloud network
when abnormal events occur, ie., the impact scope by malicious
tenants and the impact scope by service node failures. We use the
largest resource load ratio of all compute nodes as the first metric.
For each service node, its load ratio is its traffic load divided by
its traffic processing capacity, and we use the largest value as the
second metric. For each compute node, its resource load ratio is
the maximum utilization of its CPU load ratio and RAM load
ratio. The CPU/RAM load ratio equals the CPU/RAM load of
these VMs divided by the CPU/RAM capacity of this compute
node. Moreover, we measure the average number of tenants

served by each service node and the average number of service
nodes that tenants access as the third metric and the fourth
metric, respectively. We compute the valid cloud throughput as
the fifth metric. The valid cloud throughput is equal to the sum
of traffic that satisfies the service node constraints and the tenant
constraints.

In the small-scale experiments, we use iperf3 [55] and
hping [56] to implement the normal traffic and malicious tenant
traffic, respectively. Moreover, we measure the CPU utilization,
the RTT, and the packet loss ratio of service nodes as the sixth
to eighth metrics. Since tenants may generate some tasks, we
collect the tenant task makespan as the ninth metric, which is
the completion time of all tasks for the tenant.

2) Benchmarks: We choose three benchmarks for perfor-
mance comparison. The first benchmark is the default nova-
schedule scheme [23], [45]. It first filters a list of candidate
compute nodes, then places the VM on the compute node with
the lightest load according to a weighting algorithm. For conve-
nience, we named the default scheduling of the nova-scheduler
as Nova-CN (see details in Section III-A). Since Nova-CN
does not pay attention to the workload of service nodes, we
reconfigure the weighting algorithm of the nova-scheduler and
name it Nova-SN as the second benchmark. Specifically, after
the filtering algorithm of the nova-scheduler, the weighting
algorithm first chooses one service node with the least workload.
Then it selects the idlest compute node from the compute node
set served by this service node to place VMs. Nova-SN repre-
sents a category solution that separately considers the remaining
traffic processing capacity of service nodes and the remaining
computing resource of compute nodes. The last benchmark is the
Weight-Round-Robin (WRR) [57] method. WRR first allocates
weights to each service node based on its remaining resources
and the remaining resources of the compute nodes served by
it. Then WRR generates a random value and selects the service
node according to the value. Finally, WRR selects a compute
node from the compute node set served by the service node to
place VMs.

B. Large-Scale Simulations

1) Simulation Settings: We perform our simulations over two
infrastructure clouds. The first cloud architecture is Koala [59],
which consists of 20 service nodes and 600 compute nodes.
Each service node serves the traffic of 30 compute nodes. The
second cloud is generated based on the Google cluster-data [60],
which consists of 10047 compute nodes and 324 service nodes.
Each service node serves the traffic of 25-35 compute nodes. As
mentioned in Section III, one or more types of service nodes do
not affect our simulation results. For simplicity, we only consider
one type of service node. We generate three different types of
VMs: standard, memory-optimized, and computing. The above
three types of VMs are cloned in Tencent Clouds [58], and their
required resources (vCPU, RAM, and bandwidth) are different.
As shown in Table III, the first three instances represent the
standard VM instances, accommodating most applications,
such as streaming media businesses and online-game [58].
The next three instances represent the memory-optimized

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: ALLEVIATING THE IMPACT OF ABNORMAL EVENTS THROUGH MULTI-CONSTRAINED VM PLACEMENT 1517

TABLE III
MULTIPLE VM INSTANCES WITH DETAILED RESOURCES DEMAND FROM

TENCENT CLOUD [58]

Fig. 2. Load ratio of compute nodes versus number of tenants.

VM instances. They are suitable for applications that require
extensive memory operations, searches, and computations,
such as high-performance databases and distributed memory
caching [58]. The last three instances are computing VM
instances, which are suitable for compute-intensive workloads
such as batch processing, high-performance computing, and
dedicated game servers [58]. The number of tenants in the
above two clouds is set as 140 and 2000, respectively. Each
tenant randomly creates 1-50 VM instances from Table III with
different types. For each compute node, we set its vCPU cores
and RAM capacity as 25 and 150 GB, respectively. The traffic
processing capacity of each service node is set as 500 Gbps, and
the system parameters h and w are set as 40 and 10 by default,
respectively. We run each simulation 30 times and calculate the
average value as the simulation results.

2) Simulation Results: The first set of simulations compares
the load balancing performance (ie., the compute node load
ratio and the service node load ratio) of R-VMP-AI with three
benchmarks. In Fig. 2, as the number of tenants increases, the
load ratio of compute nodes accordingly increases in both the
Koala-based cloud and the Google-based cloud. For the load
ratio of compute nodes, the increasing rate of R-VMP-AI is
much slower than that of Nova-SN, but slightly faster than that of
Nova-CN. From the left plot of Fig. 2, when there are 100 tenants
in the Koala-based cloud, the load ratio of compute nodes is 0.54.
For the Nova-SN, WRR and Nova-CN methods, the load ratio of
compute nodes equals to 0.65, 0.62 and 0.53, respectively. Fig. 3
shows the CDF of the load ratio of compute nodes. We observe
that when using Nova-CN and R-VMP-AI methods, there are

Fig. 3. CDF versus load ratio of compute nodes.

Fig. 4. Load ratio of service nodes versus number of tenants.

Fig. 5. CDF versus load ratio of service nodes.

no compute nodes in the Google-Based cloud with a load rate
greater than 0.7. In contrast, when using Nova-SN and WRR
methods, more than 15% of compute nodes have a load factor
greater than 0.7. Figs. 2 and 3 show that R-VMP-AI can achieve
better load balancing performance of compute nodes compared
with Nova-SN and WRR, but slightly worse performance than
Nova-CN. Since the goal of Nova-CN is only to achieve load
balancing of compute nodes, this shows that our algorithm has
a good load balancing performance of compute nodes. Then we
observe the load ratio of service nodes. In Fig. 4, as the number
of tenants increases, we find the increasing rate of R-VMP-AI is
much slower than that of Nova-CN, but slightly faster than that
of Nova-SN. When there are 1000 tenants in the Google-based
cloud, the load ratio of service nodes is 0.38. For the Nova-SN,
WRR and Nova-CN methods, the load ratio of compute nodes
equals to 0.365, 0.4 and 0.43, respectively. Fig. 5 shows the CDF
of the load ratio of service nodes, which provides an overview
of resource usage. It is easy to observe that the load rate of
service nodes in the cloud is more balanced when using Nova-SN
and R-VMP-AI methods than when using Nova-CN and WRR

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

1518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 6. Average number of tenants in each service node versus number of
tenants.

methods. Figs. 4 and 5 show that R-VMP-AI can achieve better
load balancing performance of service nodes compared with
WRR and LLF-CN, but slightly worse than LLF-SN. Since the
goal of LLF-SN is only to achieve load balancing of service
nodes, this shows that our algorithm has a good load balancing
performance of service nodes. That is because the Nova-SN
algorithm only balances the load among all service nodes. As
shown in the right plot of Figs. 2 and 4, when there are 1500 ten-
ants in the Google-based cloud, the load ratio of compute nodes
and service nodes by Nova-CN are 0.53 and 0.63, respectively;
the load ratio of compute nodes and service nodes by Nova-SN
are 0.64 and 0.535, respectively. For the Nova-CN method, the
load balancing factor is max{0.53, 0.63}= 0.63. For Nova-SN,
the load balancing factor is max{0.64, 0.535}= 0.64. The load
balancing factor λ of our algorithm ismax{0.545, 0.55}= 0.55.
This shows our algorithm achieves a load balancing trade-off
between service nodes and compute nodes, which combines
the advantages of Nova-CN and Nova-SN. This is because we
consider the load balancing of compute nodes and service nodes
as a whole, which plays an important role in the load balancing
of the cloud.

The second set of simulations exhibits the scope of negative
impact on the cloud network when abnormal events occur.
Specifically, we use the average number of tenants served by
each service node and the average service node accessed as the
impact scope of service node failures and malicious tenants,
respectively. In Fig. 6, as the number of tenants increases, we
find that the average number of served tenants by each service
node accordingly increases by three benchmarks. However, the
number of tenants served by one service node is not more than 40
by R-VMP-AI. This means once a service node fails, at most 40
tenants will be affected. Compared with the other three bench-
marks, R-VMP-AI limits the scope of service node failures. For
example, when there are 140 tenants in the Koala-based cloud,
the number of tenants in one service node are 102, 98 and 115 by
Nova-CN, WRR and Nova-SN, respectively. Based on the above
analysis, our algorithm decreases the impact scope of service
node failures by 60.7%, 59.1%, and 65.2%, respectively. Then
we observe the impact of malicious tenants on clouds. In Fig. 7,
since each tenant requests 1-50 VMs, the number of service
nodes accessed by each tenant is relatively fixed. We find that
a tenant only accesses ten service nodes by R-VMP-AI. This

Fig. 7. Average Number of Service Nodes Served by Each Tenant versus
Number of Tenants.

Fig. 8. Throughput of All Service Nodes versus h.

Fig. 9. Throughput of all service nodes versus w.

means when one malicious tenant attacks the cloud, at most
ten service nodes will be attacked. In the Koala-based cloud,
once a malicious tenant attacks the cloud, the number of average
attacked service nodes are 9, 14, 14, 18 by R-VMP-AI, Nova-SN,
Nova-CN, and WRR, respectively. Compared with Nova-SN,
Nova-CN, and WRR, our algorithm decreases the impact scope
of malicious tenants by 35.7%, 35.7% and 50%, respectively.
Based on the above analysis, our algorithm not only achieves
resource load balancing, but also limits the network impact scope
of the two above abnormal situations.

The third set of simulations shows the impact of the setting
of two system parameters (h and w) on the valid throughput
of clouds. For convenience, we add the throughput of the cloud
without considering the service node constraints and tenant con-
straints in Figs. 8 and 9 and name it as “Optimal” to show how our
proposed constraints limit the system throughput. As shown in
Figs. 8 and 9, the throughput achieved by our proposed algorithm
is much higher than that of Nova-SN, Nova-CN, and WRR,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: ALLEVIATING THE IMPACT OF ABNORMAL EVENTS THROUGH MULTI-CONSTRAINED VM PLACEMENT 1519

Fig. 10. Throughput of All Service Nodes versus Number of Tenants.

regardless of the values of h and w. For example, in Fig. 8(a),
when h = 40, the valid throughput of the cloud are 2.35, 2.54,
1.93 and 7.04 Tbps by Nova-CN, WRR, Nova-SN and R-VMP-
AI, respectively. R-VMP-AI improves the throughput by 199%,
177% and 267% compared with Nova-CN, WRR and Nova-SN,
respectively. In Fig. 9(a), when w = 12, the valid throughput of
the cloud are 2.45, 2.64, 2.13 and 7.14 Tbps by Nova-CN, WRR,
Nova-SN and R-VMP-AI, respectively. R-VMP-AI improves
the valid throughput by 191%, 170% and 235% compared with
Nova-CN, WRR and Nova-SN, respectively. The reason is that
the other three benchmarks will abandon many VMs to meet
the service node constraints and the tenant constraints, while
R-VMP-AI already takes service node and tenant constraints
into account when deploying VMs. In addition, the performance
of our algorithm is close to the Optimal value, especially with
the increase of h. For example, in Fig. 8, when h=40 (50) in
the Google-based cloud, our algorithm only loses 4.5% (0.9%)
throughput compared with Optimal.

Our last set of simulations compares the valid throughput
of the cloud by changing the number of tenants in clouds and
the results are shown in Fig. 10. After placing all VMs on the
compute nodes, we consider whether the traffic served by service
nodes will violate the service node constraints and the tenant
constraints. If the number of tenants in one service node exceeds
40, the service node will refuse to serve the extra violated traffic.
If one tenant can access more than 10 service nodes, only part
of these service node can hanlde the tenant’s traffic. In Fig. 10,
when the number of tenants is small, the proportion of violating
traffic is also small, the throughput is still increasing. However,
When there are too many tenants, the traffic cannot be served. For
example, when there are 140 tenants in the Koala-based cloud,
the cloud throughput equals to 5.05, 1.97, 2.54, and 2.35 Tbps by
R-VMP-AI, Nova-SN, WRR, and Nova-CN, respectively. Our
algorithm improves the cloud throughput by 150% on average.

According to the simulation results, we conclude three con-
clusions. First, by Figs. 2, 3, 4, compared with the state-of-art
algorithms, our algorithm can simultaneously achieve better
load balancing among all compute nodes and among all service
nodes. Second, by Figs. 6 and 7, our algorithm reduces the
impact scope of service node failures and malicious tenants
by about 60% and 40%, respectively. Third, by Figs. 8, 9,
10, under the service node constraints and the tenant con-
straints, our algorithm can improve the cloud throughput by
about 150%.

Fig. 11. The topology of a small-scale experiments. It contains 9 compute
nodes (CNs) and 3 service nodes (SNs).

Fig. 12. The number of attacked service nodes when the cloud is attacked by
a malicious tenant.

Fig. 13. The number of affected tenants when the cloud faces one SN failure.

C. System Implementation in a Small-Scale Testbed

In this section, we implement small-scale experiments with
the popular OpenStack architecture [44]. The small-scale cloud
consists of nine compute nodes and three service nodes, and
each service node serves the traffic from three compute nodes,
as depicted in Fig. 11. Each compute node or service node runs
on a single server with a core i5-10400 processor with 12 vCPUs
and 16 GB of RAM. The peak traffic processing capacity of each
service node is set as 1000 Mbps. In our experiments, we deploy
eight tenants named u0, u1, . . ., u7, and each tenant randomly
requests a set of VMs from the cloud. We use iperf3 [55] to
generate the normal TCP service traffic between VMs and the
service nodes, and generate the malicious traffic by the hping
tool [56]. In our experiments, when a service node fails, we use
the classic backup method [40] to transfer the traffic served by
the failed service node to other available backup nodes. When
a tenant’s traffic is served by a failed service node, the tenant’s
makespan will increase significantly.

1) The Scope of Abnormal Events: In the first set of exper-
iments, we observe the impact scope of malicious tenants and
service node failures, as shown in Figs. 12 and 13. In Fig. 12, we

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

1520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 14. The CPU utilization of SNs when the cloud is attacked by a malicious
tenant.

Fig. 15. The packet loss ratio of SNs when the cloud is attacked by a malicious
tenant.

count the number of attacked service nodes when there exists
one malicious tenant in the cloud. If there exists one malicious
tenant u ∈ {u0, u2, u3, u4, u6, u7}, all three service nodes will
be attacked for the three benchmarks. However, we find that
R-VMP-AI can decrease the number of attacked service nodes
from three to one in most cases. We observe that R-VMP-AI
reduces the average impact scope of malicious tenants by 61%,
63% and 61% compared with Nova-CN, WRR and Nova-SN,
respectively. In Fig. 13, we observe the number of tenants
affected by service node failures. By Nova-CN, the failure of
any service node will cause all eight tenants to suffer QoS
degradation. By WRR and Nova-SN, the number of affected
tenants by the failure of the three service nodes equals 8, 7, 7
and 8, 7, 8, respectively. However, we find that R-VMP-AI can
decrease the number of affected tenants to 3. We can see that
R-VMP-AI decreases the average impact scope of service node
failures by 62.5%, 59.1% and 60.9% compared with Nova-CN,
WRR and Nova-SN, respectively. From the above experimental
results, we conclude that compared with three benchmarks,
R-VMP-AI can simultaneously decrease the impact scope of
malicious tenants and service node failures through two novel
constraints.

2) Service Node Performance: The second set of experiments
measures the service node performance when there exists one
malicious tenant, as shown in Figs. 14, 15, and 16. Specifically,
we randomly choose one tenant from the eight tenants as the
malicious one, which sends a large amount of malicious traffic
through hping3 [56] to simulate attacks, and measure the CPU
utilization, the round-trip time (RTT), and the packet loss ratio
of the three service nodes. In Fig. 14, we find that when the
service node is not attacked, the CPU utilization is about 6%-9%.
When the service node is under attack, its CPU utilization

Fig. 16. The round-trip time (RTT) of SNs when the cloud is attacked by a
malicious tenant.

Fig. 17. Tenant task makespan versus Tenant ID without node failure and
malicious tenant.

may reach 70% or even higher. R-VMP-AI reduces the average
CPU utilization by 57.4%, 57.9% and 60.2% compared with
Nova-CN, WRR, and Nova-SN, respectively. This is because
R-VMP-AI limits the number of attacked service nodes, ma-
licious tenants only attack a small part of the service nodes,
and most of the service nodes still works normally. In Fig. 15,
we observe that the service node will not lose packets when it
is not attacked, but the packet loss rate reaches 75% when it is
under attack. In Fig. 15, R-VMP-AI reduces the packet loss ratio
by 67.2%, 67.5% and 65.8% compared with Nova-CN, WRR,
and Nova-SN, respectively. In Fig. 16, we demonstrate the RTT
of all the service nodes. When the service node runs normally,
the RTT is about 1.4ms-1.8 ms, and increases to 10ms-11 ms
when it is attacked. Moreover, R-VMP-AI achieves the less
average RTT compared with other algorithms. For example, the
average RTT results are 11 ms, 10.4 ms, 10.5 ms and 4.9 ms
corresponding to Nova-CN, WRR, Nova-SN and R-VMP-AI,
respectively. This means that R-VMP-AI decreases the RTT by
55.4%, 52.8% and 53.3% compared with Nova-CN, WRR, and
Nova-SN, respectively. From the above experimental results,
R-VMP-AI limits the number of service nodes that a malicious
tenant can attack, and achieve much better network performance
(eg., CPU utilization, packet loss ratio and RTT).

3) Tenant Task Makespan Performance: Finally, we test the
task makespan performance of each tenant, as shown in Figs. 17,
18, and 19. To measure the task makespan, each tenant generates
50 subtasks and sends them to the fixed VM instances one by one.
The data size of these 50 subtasks satisfy the 2/8 distribution,
that is, 10 subtasks are accounting for 80% data. The remaining
40 mice subtasks account for the remaining 20% data [61]. We
mainly test the tenant makespan in three scenarios. The first
scenario is that there is no node failure nor malicious tenants

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: ALLEVIATING THE IMPACT OF ABNORMAL EVENTS THROUGH MULTI-CONSTRAINED VM PLACEMENT 1521

Fig. 18. Tenant task makespan versus Tenant ID when the cloud is attacked
by one malicious tenant.

Fig. 19. Tenant task makespan versus Tenant ID when the cloud is facing one
of service node failure.

in the cloud. In the second scenario, there is a malicious tenant
attack in the cloud. The last scenario is that one service node fails.
In Fig. 17, we first measure the task makespan of each tenant
when the cloud runs normally. We find that the task makespan
of each tenant is approximately the same. For example, the
makespan of tenant u0 is 51 s, 52 s, 52 s and 52 s by Nova-CN,
WRR, Nova-SN and R-VMP-AI, respectively. In Fig. 18, we
observe the makespan increases when the cloud is under the
attack of one malicious tenant. Specifically, the tenant makespan
has increased more drastically for Nova-CN and Nova-SN. For
example, the task makespan of tenant u0 increases to 90.4 s and
95.7 s using Nova-CN and Nova-SN, respectively. However, the
task makespan of tenant u0 keeps 52 s using our algorithm. This
is because the malicious tenant’s attack cannot reach the service
node accessed by tenant u0. Last, we collect the task makespan
when the cloud occurs service node failure, as shown in Fig. 19.
We observe that our algorithm is more resistant to service node
failure. For example, only tenant u1 experiences a significant
increase in the makespan metric. When a service node fails,
most tenants still perform their tasks normally. Compared with
the state-of-art solutions, our algorithm decreases 25% tenant
task makespan on average.

According to the above experimental results, we conclude that
R-VMP-AI can limit the impact scope of malicious tenants and
service node failures.

VI. CONCLUSION

How to alleviate the negative impact scope when an abnor-
mal event (eg., malicious tenants and node failures) occurs is
a critical challenge in clouds. In this paper, we propose two
novel constraints (ie., the service node constraints and the tenant
constraints), and a scheme to alleviate the negative impact range

of abnormal events through efficient multi-constraint VM place-
ment without consuming additional resources. We formulate the
multi-constraint VM placement as an NP-hard problem (VMP-
AI) and design a rounding-based algorithm (R-VMP-AI) with
bounded approximation factors to solve it. We implement our
proposed algorithm on a physical testbed. Both the experimental
results and simulation results show that our proposed algorithm
can significantly reduce the negative impact of abnormal events
without affecting resource balance compared with existing so-
lutions. For example, our algorithm reduces the impact scope
of service node failure by 60%, the impact scope of malicious
tenants by 40%, and the tenant task makespan by 25% compared
with other alternatives.

REFERENCES

[1] Y. Zhai, G. Zhao, H. Xu, Y. Zhao, J. Liu, and X. Fan, “Towards robust
multi-tenant clouds through multi-constrained VM placement,” in Proc.
IEEE/ACM 29th Int. Symp. Qual. Service, 2021, pp. 1–6.

[2] Amazon EC2, Accessed: Aug. 10, 2021. [Online]. Available: https://docs.
aws.amazon.com/ec2/index.html

[3] “Alibaba cloud,” Accessed: Aug. 10, 2021. [Online]. Available: https://us.
alibabacloud.com

[4] M. T. Arashloo, P. Shirshov, R. Gandhi, G. Lu, L. Yuan, and J. Rexford, “A
scalable VPN gateway for multi-tenant cloud services,” ACM SIGCOMM
Comput. Commun. Rev., vol. 48, no. 1, pp. 49–55, 2018.

[5] M. Rahman, S. Iqbal, and J. Gao, “Load balancer as a service in cloud
computing,” in Proc. IEEE 8th Int. Symp. Service Oriented System Eng.,
2014, pp. 204–211.

[6] H. Jia et al., “Security strategy for virtual machine allocation in cloud
computing,” Procedia Comput. Sci., vol. 147, pp. 140–33, 2019.

[7] S. Zhang et al., “Efficient and robust syslog parsing for network devices
in datacenter networks,” IEEE Access, vol. 8, pp. 30245–33, 2020.

[8] N.-N. Dao et al., “Securing heterogeneous IoT with intelligent DDoS
attack behavior learning,” IEEE Syst. J., vol. 16, no. 2, pp. 1974–1983,
Jun. 2022.

[9] J. Hou, P. Fu, Z. Cao, and A. Xu, “Machine learning based DDoS detection
through netflow analysis,” in Proc. IEEE Mil. Commun. Conf., 2018,
pp. 1–6.

[10] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. L. Porta, P. McDaniel, and
L. Marvel, “Malicious co-residency on the cloud: Attacks and defense,”
in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[11] B. Arzani et al., “PrivateEye: Scalable and privacy-preserving compromise
detection in the cloud,” in Proc. 17th USENIX Symp. Networked Syst. Des.
Implementation, 2020, pp. 797–815.

[12] B. Schroeder and G. A. Gibson, “A large-scale study of failures in
high-performance computing systems,” IEEE Trans. Dependable Secure
Comput., vol. 7, no. 4, pp. 337–350, Fourth Quarter 2010.

[13] I. P. Egwutuoha, S. Chen, D. Levy, and B. Selic, “A fault tolerance
framework for high performance computing in cloud,” in Proc. IEEE/ACM
12th Int. Symp. Cluster Cloud Grid Comput., 2012, pp. 709–710.

[14] R. Potharaju and N. Jain, “Demystifying the dark side of the middle: A
field study of middlebox failures in datacenters,” in Proc. Conf. Internet
Meas. Conf., 2013, pp. 9–22.

[15] C. Tan et al., “NetBouncer: Active device and link failure localization in
data center networks,” in Proc. 16th USENIX Symp. Networked Syst. Des.
Implementation, 2019, pp. 599–614.

[16] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “Intrusion detec-
tion techniques in cloud environment: A survey,” J. Netw. Comput. Appl.,
vol. 77, pp. 18–33, 2017.

[17] B. Yong, G. Zhang, H. Chen, and Q. Zhou, “Intelligent monitor system
based on cloud and convolutional neural networks,” J. Supercomputing,
vol. 73, no. 7, pp. 3260–3276, 2017.

[18] F. L. Pires and B. Barán, “A virtual machine placement taxonomy,” in Proc.
IEEE/ACM 15th Int. Symp. Cluster Cloud Grid Comput., 2015, pp. 159–
168.

[19] S. Farzai, M. H. Shirvani, and M. Rabbani, “Multi-objective
communication-aware optimization for virtual machine placement in
cloud datacenters,” Sustain. Comput.: Inform. Syst., vol. 28, 2020,
Art. no. 100374.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/ec2/index.html
https://us.alibabacloud.com
https://us.alibabacloud.com

1522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

[20] A. Shieh, S. Kandula, A. G. Greenberg, and C. Kim, “Seawall: Perfor-
mance isolation for cloud datacenter networks,” in Proc. 2nd USENIX
Conf. Hot Top. Cloud Comput., 2010, p. 1.

[21] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “State-of-the-practice
in data center virtualization: Toward a better understanding of vm usage,”
in Proc. IEEE/IFIP 43rd Annu. Int. Conf. Dependable Syst. Netw., 2013,
pp. 1–12.

[22] S. Yang, P. Wieder, R. Yahyapour, S. Trajanovski, and X. Fu, “Reliable
virtual machine placement and routing in clouds,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 10, pp. 2965–2978, Oct. 2017.

[23] OpenStack Docs: Scheduling, Accessed: Nov. 20, 2022. [Online].
Available: https://docs.openstack.org/mitaka/config-reference/compute/
scheduler.html

[24] M. Mishra and A. Sahoo, “On theory of VM placement: Anomalies in
existing methodologies and their mitigation using a novel vector based
approach,” in Proc. IEEE 4th Int. Conf. Cloud Comput., 2011, pp. 275–282.

[25] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM placement
and routing for data center traffic engineering,” in Proc. IEEE INFOCOM,
2012, pp. 2876–2880.

[26] A. Lebre, J. Pastor, A. Simonet, and M. Südholt, “Putting the next 500
VM placement algorithms to the acid test: The infrastructure provider
viewpoint,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 1, pp. 204–217,
Jan. 2019.

[27] H. Shen and L. Chen, “CompVM: A complementary VM allocation
mechanism for cloud systems,” IEEE/ACM Trans. Netw., vol. 26, no. 3,
pp. 1348–1361, Jun. 2018.

[28] C. Delimitrou and C. Kozyrakis, “Bolt: I know what you did last summer...
in the cloud,” ACM SIGARCH Comput. Architecture News, vol. 45, no. 1,
pp. 599–613, 2017.

[29] B. Grobauer, T. Walloschek, and E. Stocker, “Understanding cloud com-
puting vulnerabilities,” IEEE Secur. Privacy, vol. 9, no. 2, pp. 50–57,
Mar./Apr. 2011.

[30] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH compromise
detection using NetFlow/IPFIX,” ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 5, pp. 20–26, 2014.

[31] J. Cao, B. Yu, F. Dong, X. Zhu, and S. Xu, “Entropy-based denial-of-
service attack detection in cloud data center,” Concurrency Computation:
Pract. Experience, vol. 27, no. 18, pp. 5623–5639, 2015.

[32] H. P. K. Tiwari and A. Chaudhary, “Secure VM placement analysis against
co-location based attack in cloud,” J. Discrete Math. Sci. Cryptogr., vol. 24,
no. 5, pp. 1457–1465, 2021.

[33] W. Ding et al., “DFA-VMP: An efficient and secure virtual machine
placement strategy under cloud environment,” Peer-to-Peer Netw. Appl.,
vol. 11, no. 2, pp. 318–333, 2018.

[34] Y. Liu, X. Ruan, S. Cai, R. Li, and H. He, “An optimized VM allocation
strategy to make a secure and energy-efficient cloud against co-residence
attack,” in Proc. Int. Conf. Comput. Netw. Commun., 2018, pp. 349–353.

[35] Y. Azar, S. Kamara, I. Menache, M. Raykova, and B. Shepard, “Co-
location-resistant clouds,” in Proc. 6th Ed. ACM Workshop Cloud Comput.
Secur., 2014, pp. 9–20.

[36] M. Li, Y. Zhang, K. Bai, W. Zang, M. Yu, and X. He, “Improving cloud
survivability through dependency based virtual machine placement,” in
Proc. Int. Conf. Secur. Cryptograph, 2012, pp. 321–326.

[37] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: Measurement, analysis, and implications,” in Proc. ACM
SIGCOMM Conf., 2011, pp. 350–361.

[38] A. Engelmann and A. Jukan, “A reliability study of parallelized VNF
chaining,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–6.

[39] J. Li, W. Liang, M. Huang, and X. Jia, “Reliability-aware network ser-
vice provisioning in mobile edge-cloud networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 7, pp. 1545–1558, Jul. 2020.

[40] X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service func-
tion chain backup cost over the edge and cloud by a self-adapting
scheme,” IEEE Trans. Mobile Comput., vol. 21, no. 8, pp. 2994–3008,
Aug. 2022.

[41] J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu, “RABA:
Resource-aware backup allocation for a chain of virtual network func-
tions,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1918–1926.

[42] Y. Li et al., “Predicting node failures in an ultra-large-scale cloud com-
puting platform: An AIOps solution,” ACM Trans. Softw. Eng. Methodol.,
vol. 29, no. 2, pp. 1–24, 2020.

[43] L. Caviglione, M. Gaggero, M. Paolucci, and R. Ronco, “Deep reinforce-
ment learning for multi-objective placement of virtual machines in cloud
datacenters,” Soft Comput., vol. 25, no. 19, pp. 12569–12588, 2021.

[44] “Build the future of open infrastructure,” Accessed: Aug. 10, 2021. [On-
line]. Available: https://openstack.org

[45] S. Sotiriadis, N. Bessis, and R. Buyya, “Self managed virtual machine
scheduling in cloud systems,” Inf. Sci., vol. 433, pp. 381–33, 2018.

[46] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Trans. Commun.,
vol. 64, no. 9, pp. 3746–3758, Sep. 2016.

[47] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, “Elastic load balancing
for dynamic virtual machine reconfiguration based on vertical and hori-
zontal scaling,” IEEE Trans. Serv. Comput., vol. 12, no. 2, pp. 319–334,
Mar./Apr. 2016.

[48] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating
virtual network functions,” in Proc. 11th Int. Conf. Netw. Service Manage.,
2015, pp. 50–56.

[49] G. C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow, “HPC-
ABDS high performance computing enhanced apache big data stack,”
in Proc. 15th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2015,
pp. 1057–1066.

[50] W. JingZhou, Z. Gongming, X. Hongli, H. He, L. Luyao, and Y. Yongqiang,
“Robust service mapping in multi-tenant clouds,” in Proc. 40th Annu. IEEE
Int. Conf. Comput. Commun., 2021, pp. 1–11.

[51] J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation algorithms for
scheduling unrelated parallel machines,” Math. Program., vol. 46, no. 1,
pp. 259–271, 1990.

[52] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and multi-
commodity flow problems,” in Proc. 16th Annu. Symp. Found.s Comput.
Sci., 1975, pp. 184–193.

[53] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas,
“Fast approximation algorithms for multicommodity flow problems,” J.
Comput. System Sci., vol. 50, no. 2, pp. 228–243, 1995.

[54] P. Raghavan and C. D. Tompson, “Randomized rounding: A technique for
provably good algorithms and algorithmic proofs,” Combinatorica, vol. 7,
no. 4, pp. 365–374, 1987.

[55] “iPerf - the ultimate speed test tool for TCP, UDP and SCTP,” Accessed:
Aug. 10, 2021. [Online]. Available: https://iperf.fr

[56] “hping - the TCP/IP packet assembler/analyzer,” Accessed: Aug. 10, 2021.
[Online]. Available: https://github.com/antirez/hping

[57] N. K. C. Das, M. S. George, and P. Jaya, “Incorporating weighted round
robin in honeybee algorithm for enhanced load balancing in cloud environ-
ment,” in Proc. Int. Conf. Commun. Signal Process., 2017, pp. 0384–0389.

[58] “Tencent cloud instance types,” Accessed: Aug. 10, 2021. [Online]. Avail-
able: intl.cloud.tencent.com/document/product/213/11518

[59] C. Baun and M. Kunze, “The koala cloud management service: A modern
approach for cloud infrastructure management,” in Proc. 1st Int. Workshop
Cloud Comput. Platforms, New York, NY, USA, 2011.

[60] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
Format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[61] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. 9th ACM
SIGCOMM Conf. Internet Meas., 2009, pp. 202–208.

Gongming Zhao (Member, IEEE) received the PhD
degree in computer software and theory from the
University of Science and Technology of China, in
2020. He is currently an associate professor with the
University of Science and Technology of China. His
current research interests include software-defined
networks and cloud computing.

Jiawei Liu received the BS degree from the College
of Computer Science and Technology, Jilin Univer-
sity, in 2014. He is currently working toward the EngD
degree in computer technology with the University
of Science and Technology of China. His current
research interests include software-defined networks,
cloud computing, and programmable networks.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html
https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html
https://openstack.org
https://iperf.fr
https://github.com/antirez/hping
intl.cloud.tencent.com/document/product/213/11518

ZHAO et al.: ALLEVIATING THE IMPACT OF ABNORMAL EVENTS THROUGH MULTI-CONSTRAINED VM PLACEMENT 1523

Yutong Zhai received the BS degree in computer
science and the PhD degree in computer software and
theory from the University of Science and Technology
of China, China, in 2017 and 2022, respectively.
His research interests include the areas of software-
defined networking, internet traffic measurement, and
edge computing.

Hongli Xu (Member, IEEE) received the BS degree
in computer science and the PhD degree in computer
software and theory from the University of Science
and Technology of China, China, in 2002 and 2007,
respectively. He is currently a professor with the
School of Computer Science and Technology, Univer-
sity of Science and Technology of China (USTC). He
has published more than 100 articles in famous jour-
nals and conferences, including IEEE/ACM Trans-
actions on Networking, IEEE Transactions on Mo-
bile Computing, IEEE Transactions on Parallel and

Distributed Systems, International Conference on Computer Communications
(INFOCOM), and International Conference on Network Protocols (ICNP). He
has held more than 30 patents. His research interests include software defined
networks, edge computing, and the Internet of Thing. He was awarded the
Outstanding Youth Science Foundation of NSFC in 2018. He has won the best
paper award or the best paper candidate in several famous conferences.

Huang He (Member, IEEE) received the PhD degree
from the School of Computer Science and Technol-
ogy, University of Science and Technology of China
(USTC), in 2011. He is currently a professor with the
School of Computer Science and Technology, Soo-
chow University, China. His current research interests
include traffic measurement, computer networks, and
algorithmic game theory. He is a member of the ACM.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 21,2023 at 11:32:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

